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Figure 1. A router with 8 input ports and 7 output ports, like the Alpha 21364 router.  The arbiter controls how and which packets are forwarded from the input to the output ports.  

ABSTRACT

Interconnection networks usually consist of a fabric of interconnected routers, which receive packets arriving at their input ports and forward them to appropriate output ports.  Unfortunately, network packets moving through these routers are often delayed due to conflicting demand for resources, such as output ports or buffer space.  Hence, routers typically employ arbiters that resolve conflicting resource demands to maximize the number of matches between packets waiting at input ports and free output ports. Efficient design and implementation of the algorithm running on these arbiters is critical to maximize network performance. 

This paper proposes a new arbitration algorithm called SPAA (Simple Pipelined Arbitration Algorithm), which is implemented in the Alpha 21364 processor’s on-chip router pipeline.  Simulation results show that SPAA significantly outperforms two earlier well-known arbitration algorithms: PIM (Parallel Iterative Matching) and WFA (Wave-Front Arbiter) implemented in the SGI Spider switch.  SPAA outperforms PIM and WFA because SPAA exhibits matching capabilities similar to PIM and WFA under realistic conditions when many output ports are busy, incurs fewer clock cycles to perform the arbitration, and can be pipelined effectively. Additionally, we propose a new prioritization policy called the Rotary Rule, which prevents the network’s adverse performance degradation from saturation at high network loads by prioritizing packets already in the network over new packets generated by caches or memory.  

1. Introduction

Cache-coherent, shared-memory multiprocessors with 16 or more processors have become common server machines.   In 2001 such machines generated a total revenue of $9 billion, which is roughly 16% of the world-wide server revenue [6].  This market segment’s revenue tripled in the last four years making it the fastest growing segment of the entire server market.  Major vendors, such as IBM [8]

 REF _Ref2497903 \r \h 
[37], Hewlett-Packard [19]

 REF _Ref2496559 \r \h 
[17]

 REF _Ref2496566 \r \h 
[26], SGI [33], and Sun Microsystems [6] offer such shared-memory multiprocessors, which scale up to anywhere between 24 and 512 processors. 

High performance interconnection networks are critical to the success of large-scale shared-memory multiprocessors. Such networks allow a large number of processors and memory modules to communicate with one another using a cache coherence protocol.   In such systems, a processor’s cache miss to a remote memory module (or another processor’s cache) and consequent miss response are encapsulated in network packets and delivered to the appropriate processors or memories.   The performance of many parallel applications, such as database servers [29], depends on how rapidly and how many of these miss requests and responses can be processed by the system.  Consequently, it is extremely critical for networks to deliver packets with low latency and high bandwidth. 

An interconnection network usually consists of a fabric of small interconnected routers, which receive packets arriving at their input ports and forward them to appropriate output ports.   Unfortunately, packets moving through such routers are often delayed due to conflicting demand for resources, such as output ports or buffer space.  Hence, routers include arbiters to resolve conflicting resource demands (Figure 1).   The presence of input buffers in a router usually divides up the arbitration process into two steps: first an input port picks one or more packets from those waiting in its buffers, and then an output port picks a packet among the packets nominated to it by one or more input ports.  By definition only one packet can be delivered through an output port.  

This paper examines several arbitration algorithm choices for the on-chip router in the Alpha 21364 processor [3], which runs at 1.2 GHz and uses 152 million transistors to integrate on the same chip an aggressive dynamically-scheduled processor, 1.75 megabytes of second-level cache, two Rambus Direct RDRam™ memory controllers, and an interconnection network router. Efficient design and implementation of these arbiters is critical to maximize network throughput, as illustrated by Figure 2.  Typically, arbitration algorithms try to maximize the number of matches between input and output ports to provide high local routing throughput.  A locally maximal match in a router does not necessarily guarantee globally optimal network performance.  Nevertheless, in our experience, a locally maximal match has the first order impact on overall network performance.

  The high-frequency implementation of the Alpha 21364 router made the already difficult task of arbitration even harder.  The entire 21364 chip, including the router, runs at 1.2 GHz.  In contrast, earlier generations of such routers ran at much slower speeds.  For example, the Cray T3E router runs at 75 MHz [31], the SGI Spider runs at 100 MHz [16], while IBM’s third generation Vulcan switch runs at 125 MHz [35]. 

For efficient implementation at 1.2 GHz, we had to pipeline the 21364 router.  Unfortunately, in the 0.18 micron CMOS process that the 21364 was designed for, only up to 12-13 logic levels could be incorporated in the 0.83 nanoseconds cycle time.  This forced us to pipeline the arbitration algorithm itself, unlike the SGI switch in which the algorithm was implemented within one 10-nanosecond clock cycle.  Unfortunately, each additional cycle added to the 21364 router’s arbitration pipeline degraded the network throughput by roughly 5% under heavy load
.  Hence, any additional cycles incurred by a more complex arbitration algorithm must gain back the performance degradation from the added cycles in the pipeline. 

This paper shows that SPAA (Simple Pipelined Arbitration Algorithm)—implemented in the 21364 router—significantly outperforms two well-known arbitration algorithms—Parallel Iterative Matching (PIM) [2] and Wavefront Arbitration (WFA) [36], which is implemented in the SGI Spider switch.  For completeness, we also examine a maximal cardinality matching algorithm (MCM), which maximizes the number of matches between packets waiting at the input ports and free output ports.   

The number of matches found by PIM and WFA between packets waiting at input ports and free output ports is close to that of MCM’s, which makes both PIM and WFA very powerful arbitration algorithms.  PIM iterates between the input and output ports to find a suitable match of packets, whereas WFA makes a pass through a matrix of input and output ports to find a suitable match.   

The key to PIM and WFA’s high matching capabilities lies in their high level of interaction between input and output ports.  When multiple input ports nominate packets to the same output port, naïve algorithms, such as OPF in Figure 2, can result in arbitration  “collisions” and consequent poor performance.  In contrast, both PIM and WFA’s input and output port arbiters will interact to choose the appropriate match for the specific arbitration cycle. Unfortunately, such high level of interaction requires a higher number of cycles to implement them compared to what a simpler algorithm, such as SPAA, would need.  Additionally, such interaction also makes it hard to pipeline these algorithms.  

SPAA is a much simpler algorithm compared to PIM and WFA and is more like the OPF algorithm in Figure 2.  In SPAA, each input port chooses a packet in every cycle to nominate to an output port.  However, an input port arbiter’s choice is independent of most of the other input port arbiters.  Similarly, an output port arbiter chooses a packet from the packets nominated to it by the input port arbiters.  But, an output port arbiter’s decision is independent of the other output port arbiters’ decisions. Thus, SPAA minimizes interactions between the input and output ports.   

	Input Port 0
	3
	2
	1

	Input Port 1
	3
	2
	1

	Input Port 2 
	3
	2
	1

	Input Port 3
	3
	2
	1

	Input Port 4
	3
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	Input Port 5
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	2
	0

	Input Port 6
	3
	2
	4

	Input Port 7
	3
	2
	5


Figure 2. An illustration of the challenges of an arbitration algorithm for the router in Figure 1.  The first column lists the input ports.  Column 2 – 4 list the output port destinations of the packets waiting at that input port.  Column 2 contains the oldest packets to arrive at the specific input port, while column 4 lists the corresponding youngest packets.  An arbitration algorithm (lets call it OPF) that picks the oldest packet from each input port will be sub-optimal because output port 3 can deliver only one packet. Thus, OPF will result in arbitration collisions at output port 3.  In contrast, an arbitration algorithm that chooses the shaded packets will have the maximum throughput at this router in the current arbitration cycle. 

Clearly, because of its reduced interaction between input and output port arbiters, SPAA can result in arbitration collisions at the output port and, hence, fewer matches than what PIM or WFA would offer.  Nevertheless, SPAA significantly outperforms both algorithms because of three reasons.  First, with medium to heavy loads many output ports are busy and, hence, an arbitration algorithm need only find matches for a few free output ports.   Thus, when our seven output ports are busy 50% of the time, SPAA’s matching capabilities are similar to PIM and WFA’s.   The difference between PIM, WFA, and SPAA’s matching capabilities is negligible when the output ports are busy 75% of the time. 

Second, SPAA minimizes its interaction between input and output ports, which lowers its matching capabilities, but makes it simpler, so that it can be implemented in three cycles in the 21364 router.  WFA would have incurred four cycles to implement.   Similarly, one iteration of PIM takes four cycles to implement.  Multiple iterations of PIM would have incurred significantly more cycles and would have obviously performed poorly in our environment.  Hence, we use only one iteration of PIM—which we call PIM1—in all our timing evaluations.  

Third, SPAA can be pipelined effectively because it minimizes interactions between the input and output ports.  PIM1 requires an extra step of interaction between the output and input ports, whereas WFA requires interaction between the output ports themselves.  These features prevent both PIM1 and WFA from being pipelined effectively.  In our implementation both PIM1 and WFA take four cycles, but can start input port arbitration every three cycles, whereas SPAA takes three cycles and can initiate input port arbitration every cycle.  

Additionally, SPAA nominates a packet to only one output port, unlike PIM or WFA, which can nominate the same packet to multiple output ports.  This has the added benefit that a packet can be speculatively read out from an input buffer as soon as it is scheduled for delivery by an input port arbiter (but before the output port arbitration is complete), much like the way direct-mapped caches allow processors to speculatively read out data before the address comparison completes [20].

Our simulation results show that SPAA significantly outperforms both PIM1 and WFA.   We also demonstrate that SPAA will continue to deliver higher throughput compared to PIM1 and WFA, if the router were scaled to have twice the pipeline length, greater input load, or support bigger networks than the 21364 was designed for. 

In addition to SPAA, we propose a new prioritization policy called the Rotary Rule, which provides a significant boost in network performance by preventing the network’s adverse performance degradation from saturation at high network loads.  The Rotary Rule prioritizes the movement of network packets already in the network over packets recently generated from the processor ports.  We demonstrate the effectiveness of the Rotary Rule with WFA and SPAA.  The Alpha 21364 router provides the Rotary Rule as an optional mode programmable at boot-time.   We do not, however, expect most real applications running on a system composed of 21364 processors to create such heavy network load that would require us to turn on the Rotary Rule. 

The rest of the paper is organized as follows.  We first describe the 21364’s base router architecture in Section 2.  Section 3 discusses PIM, WFA, SPAA, and the Rotary Rule, as well as related work.  Section 4 discusses our evaluation methodology and Section 5 describes our results.  Section 6 summarizes the paper and presents our conclusions.  

2. The Alpha 21364 ON-CHIP ROUTER

Mukherjee, et al. [26] discusses details of the 21364 network and router architectures.   Here we summarize the salient features of the network (Section 2.1) and the router pipeline (Section 2.2) relevant to this paper. 
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Figure 3. A 12-processor Alpha 21364 2D torus network. 
2.1 21364 Network Architecture

The Alpha 21364’s on-chip router uses two million transistors to connect up to 128 processors in a two-dimensional torus network (Figure 3). Salient features of the network are:

· Packets. The network supports seven classes of coherence packets for the directory-based cache-coherence protocol.  These are requests (three flits), forwards (three flits), block response (18 or 19 flits), non-block response (two or three flits), write I/O (19 flits), read I/O (three flits), and special (one flit, excluding no-ops).   Each flit is 39 bits—32 bits for data and 7 bits for ECC.   A 19 flit packet, such as a block response, can carry a 64-byte cache block (3 flits for header and 16 flits for the cache block).   Thus, when an input or an output port is scheduled to deliver a packet, the port can be busy for two, three, 18, or 19 cycles.  An output port is ready for re-arbitration once all flits of a packet are delivered via the port. 

· Virtual Cut-Through Routing.  The 21364 uses virtual cut-through routing in which flits of a packet proceed through multiple routers until the header flit gets blocked at a router. Then, all flits of the packet are buffered at the blocking router until the congestion clears. Subsequently, the packet is scheduled for delivery through the router to the next router and the same pattern repeats. To support virtual cut-through routing, the 21364’s router provides buffer space for 316 packets per input port [26].   Note that a packet is never dropped from the network in the absence of errors. 


Figure 4. Two of the nine logical router pipelines in the 21364.  (a) shows the router pipeline for a local input port (cache or memory controller) to an interprocessor output port (b) shows the router pipeline from an interprocessor (north, south, east, or west) input port to an interprocessor output port.  The first flit goes through two pipelines: the scheduling pipeline (upper pipeline) and data pipeline (lower pipeline). Second and subsequent flits follow the data pipeline. RT = Router Table Lookup, Nop = No operation, T = Transport (wire delay), DW = Decode and Write Entry Table, LA = Input Port Arbitration, RE = Read Entry Table and Transport, GA = Output Port Arbitration, W = Wait, WrQ = Write Input Queue, RQ = Read Input Queue, X = Crossbar, and ECC = Error Correction Code. This paper focuses on the LA, RE, and GA stages of the pipeline. 

· Adaptive Routing in the Minimal Rectangle.  In the 21364, packets adaptively route within the minimum rectangle.   Given two points in a torus (in this case, the current router and the destination processor), one can draw four rectangles that contain these two points as their diagonally opposite vertices. The minimum rectangle is the one with the minimum diagonal distance between the current router and the destination. Thus, the adaptive routing algorithm has to pick one output port among a maximum of two output ports that a packet can route in.  Packets that follow adaptive routing may not be delivered in order, but the coherence protocol in 21364 is designed to handle out of order traffic. 

· Virtual Channels.  The 21364 router uses virtual channels [9] to break deadlocks in the coherence protocol and the routing algorithms.   It assigns a virtual channel group to each coherence packet class.  By design, these virtual channel groups are ordered, such that a request packet can never block a block response packet.  Each group (except the special class) contains three virtual channels: adaptive, VC0, and VC1.   Packets adaptively route within the adaptive channel until they get blocked.
  Blocked packets are then routed in the deadlock-free channels, VC0 and VC1, which follow strict dimension-order routing.  Duato [13] has shown that such a scheme breaks routing deadlocks in such networks.  Because of virtual cut-through routing, however, packets can return from the deadlock-free channels to the adaptive channel.  For performance reasons, the adaptive channels have the bulk of the packet buffers, whereas the VC0 and VC1 typically have one or two buffers.   In the 21364 there is a total of 19 virtual channels (three for each of the six non-special coherence classes and one for the special class).

· Ports.  Each port is 39 bits wide to match the network’s flit size.  Each router has eight input ports and seven output ports.  The input ports include four 2D torus ports (north, south, east, and west), one cache port (that sends cache miss requests, etc.), two memory controller ports (that sends responses to cache miss requests), and one I/O port.  The buffers at each input port have two read ports to allow the arbitration algorithm greater choice in matching inputs to outputs.  Like the input ports, the output ports are divided into four 2D torus ports (north, south, east, and west), two memory controller ports, and one I/O port.  Inside the processor, the two memory controller ports are also tied to the internal cache and, hence, there is no separate explicit cache output port. 

2.2 21364 Router Pipeline

The 21364’s router has nine pipeline types based on the input and output ports.  There are three types of input and output ports: local (cache and memory controllers), interprocessor (off-chip network), and I/O.  Any type of input port can route packets to any type of output port, leading to nine types of pipeline. Figure 4 shows two such pipeline types.  
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Figure 5.  The 21364 router’s connection matrix.  This figure represents the router’s crossbar connections in a matrix format.  “G-X” denotes output port arbiter for output port X.  “L-X rpY” denotes input port arbiter for input port X and read port Y.  The shaded boxes represent no connection. 

As Figure 4 shows, the router pipeline in the 21364 consists of several stages that perform router table lookup, decoding, arbitration, forwarding via the crossbar, and ECC calculations.  A packet originating from the local port looks up its routing information from the router table and loads it up in its header.   The decode stage decodes a packet’s header information and writes the relevant information into an entry table, which contains the arbitration status of packets and is used in the subsequent arbitration pipeline stages. 

The 21364’s arbitration pipeline, which is the focus of this paper, consists of three stages: LA (input port arbitration), RE (Read Entry Table and Transport), and GA (output port arbitration).
   The input port arbitration stage finds packets from the input buffers and nominates one of them for output port arbitration.   Each input buffer has two read ports and each read port has an input port arbiter associated with it.  Thus, the 21364 has a total of 16 input port arbiters.  The input port arbiters perform several readiness tests, such as determining if the targeted output port is free, using the information in the entry table. 

The output port arbiters accept packet nominations from the input port arbiters and decide which packets to dispatch.  Each output port has one arbiter, so the 21364 has a total of seven output port arbiters.   Once an output port arbiter selects a packet for dispatch, it informs the input port arbiters of its decision, so that the input port arbiters can re-nominate the unselected packets in subsequent cycles. 

Figure 5 shows the crossbar connection between the input and output port arbiters.  Although the connections form a crossbar between input and output ports, the individual read ports are not connected to all the output ports.   The same crossbar connection is followed by the datapath in the X stage of the pipeline (Figure 4). 

In addition to the basic pipeline latency, there are six additional delay cycles along the path of a packet, including synchronization delay, pad receiver and driver delay, and transport delay from the pins to the router and from the router back to the pins.  Thus, the on-chip pin-to-pin latency from a network input to a network output is 13 cycles.   At 1.2 GHz, this leads to a pin-to-pin latency of 10.8 nanoseconds.   

Also, the network links that connect the different 21364 chips run at 0.8 GHz, which is 33% slower than the internal router clock. The input port arbitration internally nominates packets at the appropriate cycles so that packets leaving the router are synchronized with the off-chip network clock. 

3. Arbitration Algorithms

In the 21364 router, the 16 input port arbiters and 7 output port arbiters work together to implement the arbitration algorithm.  The 21364 router’s arbitration problem can be modeled in two ways.  First, it can be modeled as a matching problem in a bipartite graph with 16 input port arbiters and 7 output port arbiters.  Each connection between the input and output port arbiters will carry a certain “weight.”  Then, a Maximum Weight Matching (MWM) algorithm, will try to find a match that maximizes the total weight of the connections selected by the match.  Examples of such MWM algorithms are LQF (longest queue first), which uses the number of waiting packets at an input port as the weight for a connection, and OCF (oldest cell first), which uses the waiting time for the oldest packet at an input buffer as the weight for a connection [24].  Unfortunately, the MWM algorithms require O(N3) iterations in the worst case [25], which makes it very difficult to implement them in hardware in a few cycles.  Also, approximations of the MWM algorithm, such as RPA [1], MUCS [12], Laura and Serena [25], and Apsara [18], are also not implementable in hardware within a few cycles. 

In this paper, as an upper bound we use an algorithm called the Maximal Cardinality Matching Algorithm (MCM), which is basically MWM with all connections having equal weights.  MCM exhaustively searches the space for the maximum number of matches between input and output port arbiters.  We use MCM only in our non-timing simulations because we do not know how to implement MCM in hardware within a few cycles. 

Another way to model the arbitration problem is to use a two-dimensional “connection” matrix with input ports forming the rows and output ports forming the columns.  Such a representation makes it easier for us to explain the arbitration algorithms we study in this paper.  In this representation, an input port nominates packets to output ports by filling up the corresponding row in the matrix.   An output port chooses packets from input ports by scanning the corresponding column in the matrix.  

Figure 5 shows the connection matrix for the 21364 router.  Given this representation, an arbitration algorithm for the 21364 router then needs to answer the following questions:

· Which packets should an input port arbiter nominate to an output port arbiter?  An input port arbiter can pick packets out of all the buffers in each of the 19 virtual channels.   For correctness and improved performance, each input port arbiter (independent of the arbitration algorithm) obeys some basic constraints, such as whether the corresponding output port is free to dispatch a packet.   Each input port arbiter then selects the oldest packet, which satisfies the basic constraints, from the least-recently selected virtual channel.   An input port arbiter fills up the corresponding row in the connection matrix with the packets it selects. 

· Can the same packet be nominated multiple times?   Any packet can proceed along a maximum of two directions because 21364 adaptively routes packets within the minimal rectangle (Section 2.1).  Thus, a packet can be nominated to at most two output port arbiters.   Multiple nominations have the advantage that a packet would have a greater probability of being dispatched in the same cycle.   However, multiple nominations of the same packet also imply extra interaction between input and output ports to ensure that the same packet is not dispatched through two different output ports. 

· Which packets should an output port arbiter pick from the packets nominated to it by the input port arbiters?  An output port arbiter examines its corresponding column for packets nominated to it by all the input port arbiters.  Then, to select a packet from a column it can use a variety of policies, such as random [11], round-robin [31], least-recently selected [35], some kind of a priority chain [10], or the “Rotary Rule.”  Such prioritization policies are easily implemented in hardware via a priority matrix.  We describe the implications of some of these policies later in this section.  Section 3.4 describes the Rotary Rule in detail. 

· Can there be multiple iterations (or passes) through the matrix?  Multiple iterations through the nomination and selection procedure allow the arbitration algorithm to find more matches compared to a single iteration.    However, multiple iterations would also incur higher number of cycles to perform the arbitration.  

Answers to the above questions have important implications on the hardware implementation of an arbitration algorithm.   For example, these choices determine how much synchronization is required among all the 23 arbiters (16 for input, 7 for output) in the router and whether the arbitration algorithm can be effectively pipelined. 

The rest of this section discusses how PIM, WFA, and SPAA answer the above questions (Sections 3.1, 3.2, and 3.3).   Section 3.4 describes the Rotary Rule and how it can be incorporated into WFA and SPAA.  

3.1 Parallel Iterative Matching

The Parallel Iterative Matching (PIM) algorithm, proposed by Anderson, et al. [2], was designed to quickly identify a set of conflict-free packets for transmission through an ATM switch.  PIM works extremely well in such ATM switches where the matching algorithm may be implemented in software.  The key to PIM’s success lies in its interaction between input and output port arbiters, which avoids arbitration collisions incurred by naïve algorithms, such as OPF (Figure 2). 

Below we describe the algorithm’s three key steps for the 21364 router:

1. Nominate. Each unmatched input port arbiter nominates a packet for each output port arbiter for which it has a packet.  The same packet can be nominated to multiple output port arbiters. 

2. Grant. If an unmatched output port arbiter receives any requests, it accepts one randomly and informs the corresponding input port arbiter of its decision. 

3. Accept. If an input port arbiter receives grants for multiple output port arbiters, it selects one randomly. 

PIM iterates over the above three steps until the algorithm converges.   According to Anderson, et al. [2], PIM usually converges within log2N iterations, so the 21364 router would need four iterations (N = 16 input port arbiters) of the above three steps.   Researchers have proposed variations of PIM, such as iSLIP [23] that can be implemented in hardware, but their matching capabilities are similar to PIM’s. 

PIM has two properties that make it difficult to implement in hardware in a few cycles.  First, it can nominate the same packet to multiple output port arbiters, even though multiple output port arbiters cannot dispatch the same packet.  PIM avoids multiple dispatches using an additional synchronization step (Step 3) between the input and output port arbiters. Unfortunately, this synchronization makes it difficult for input port arbiters to nominate other packets until they receive their grants from the output port arbiters.  In other words, it is hard to do input port arbitrations in consecutive cycles, which makes it difficult to pipeline PIM. 

Second, PIM requires multiple iterations of its three steps.   This would further increase the delay of the algorithm.  Hence, we use a variant of PIM called PIM1, which is PIM with one iteration of its three steps.  McKeown has shown, however, that PIM1’s matching capabilities are significantly worse than PIM’s [24]. 

In our evaluation, we assume that PIM1 takes four cycles for arbitration.  We would implement PIM1 using a centralized 16x7 connection matrix, which receives inputs from the input port arbiters and lets output port arbiters iterate over its columns.  The first three cycles of the four cycles consist of matrix operations and wire delays: 1.5 cycles to select packets from the input ports and load up the matrix (i.e., nominate) and 1.5 cycles to grant and accept (via passes over the matrix).  The speed at which the matrix can be evaluated is limited because of dependences between the input and output ports and the limited number of logic levels (12-13) per cycle in our process technology.  Further, PIM1 requires a random number generator, which will require a few additional logic levels. 

In this implementation of PIM1, a new arbitration can be started every three cycles because nominate, grant, and accept take a total of three cycles.  Starting a grant or accept before the prior nominate step is difficult because of two reasons.  First, the total nominations for the matrix could be up to 54 (unshaded boxes in Figure 5).   Keeping track of these large number of in-flight packets (i.e., nominated, but not delivered) would require additional state and could increase the number of cycles incurred by PIM1.  Second, we would have to maintain multiple copies of the matrix to act as buffers for the pipeline stages for the arbiters.  These matrices must be consistent with one another and should not be loaded with stale packets.   Again, this may further increase the number of cycles incurred by PIM1.   

The fourth cycle of PIM1’s four-cycle arbitration accounts for wire delays from the matrix to the output ports and can be pipelined. 

3.2 Wave-Front Arbiter

Tamir and Chi [36] proposed the Wave-Front Arbiter (WFA) for routers in interconnection networks.  WFA has been implemented in the SGI Spider interconnect [16].  WFA is a much lighter-weight algorithm than PIM1 and could be used effectively in routers that operate at a much lower frequency than that of the 21364 router.  For example, WFA in the Spider switch operates at 100 MHz and is implemented within a single 10 nanosecond clock cycle.  Also, the key to WFA’s success lies in its interaction among the input port arbiters and among the output port arbiters, which allows it to avoid arbitration collisions that may be incurred by naïve algorithms, such as OPF (Figure 2). 

WFA operates on the entire connection matrix as a whole.   First, the input port arbiters load up the matrix with their nominations.  Then, evaluation of the matrix starts from a specific cell in the matrix.  The evaluation proceeds in a wave front as follows (Figure 6):

Granti,j = Request i,j  and Ni,j  and Wi,j
Si,j = Ni,j and NOT(Granti,j)

Ei,j =  Wi,j and NOT(Granti,j)

The connection matrix is represented in hardware as a two-dimensional array of arbitration cells.  The position of each cell in the connection matrix is denoted by i,j.  Request denotes that an input port arbiter has nominated a packet for that arbitration cell.  Grant denotes that the specific arbitration cell has been chosen for packet delivery. Then, following the above equations, no other cell in the same row (i.e., same input port arbiter) and no other cell in the same column (i.e., same output port arbiter) as the granted cell, would select any other packet for dispatch.  Also, note that Ni,j = Si-1,j and Wi,j = Ei,j-1. 

Thus, as Figure 6 shows, if the evaluation starts with wavefront 1, then the cell (0,0) will be evaluated first, followed by the cells (0,1) and (1,0), which make up wavefront 2.   Subsequent wavefronts will be evaluated in this fashion. 

To ensure fairness, the first cell from where the wave fronts begin must be chosen carefully.  Tamir and Chi suggested using a robin-robin scheme to choose the first cell. We will refer to this scheme as WFA-base.  Section 3.4 will show how to use the Rotary Rule to choose the first cell, which we will refer to as WFA-rotary. 

Although the WFA is very appealing, it is not amenable to efficient pipelining.   This is because input port arbiters in WFA, like in PIM, can nominate the same packet to multiple output port arbiters.  PIM uses synchronization between input and output port arbiters (Step 3 in PIM) to avoid multiple dispatches of the same packet.  In contrast, WFA requires communication between the output port arbiters—via the propagation of the N and S signals along the columns—to avoid dispatching the same packet through multiple output port arbiters.   Note that WFA uses the same mechanism—i.e., interaction among output port arbiters—to avoid arbitration collisions and, thereby, provide good matching performance.  Thus, interaction between output port arbiters is fundamental to the WFA algorithm.  Additionally, micropipelining the matrix operations themselves—by pipelining the “waves” of the WaveFront Arbiter—is difficult because the starting cell (as indicated in the last paragraph) changes every cycle. 




Figure 6.  Operations of the Wave-Front Arbiter (WFA) for a 4x4 connection matrix. (a) The dotted lines (with circled numbers) show the wave fronts.  Each square represents an arbitration cell with coordinates i,j.    (b) This figure shows an arbitration cell (i,j) of the WFA matrix. 

We assume a four-cycle arbitration delay for the WFA.  Our timing is optimistically based on the Wrapped Wave-Front Arbiter, proposed by Tamir and Chi. The Wrapped WFA provides matching performance similar to that of WFA’s, but executes faster in hardware by starting multiple wavefronts in parallel.  As in PIM1, the first three cycles of WFA’s four-cycle arbitration are spent on matrix operations and wire delays: 1.5 cycles to nominate packets and load up the matrix and 1.5 cycles to evaluate the matrix.   WFA suffers from the same problems as PIM1 (Section 3.1) and hence a new arbitration can only be restarted every three cycles.   Again, as in PIM1, the fourth cycle accounts for wire delays from the matrix to the output ports and can be pipelined. 

3.3 Simple Pipelined Arbitration Algorithm
The Simple Pipelined Arbitration Algorithm (SPAA) implemented in the 21364 carefully minimizes the impact of features, such as interaction between input and output ports, which would be hard to pipeline.   However, this also makes its matching performance much worse than PIM1 and WFA because it may not be able to avoid arbitration collisions (Figure 2), particularly in the presence of a large number of free output ports.   Thus, in terms of its matching capability, SPAA is more like OPF from Figure 2. 

Like PIM, SPAA has three steps:

4. Nominate. Each input port arbiter nominates a packet for only one output port arbiter, if there is one.  A nominated packet cannot be nominated again in subsequent cycles until Step 3 of this algorithm completes. 

5. Grant. If an output port arbiter receives multiple requests, it selects the packet from the least-recently selected input port arbiter.   Then, it informs all input port arbiters connected to it of its decision.    

6. Reset.  An input port arbiter resets the state of all nominated packets that are not selected by the output port arbiter, so that they can be nominated again.  
SPAA has three important properties that make it amenable to easy hardware implementation and pipelining.  First, unlike PIM1 or WFA, an input port arbiter nominates a packet to only one output port arbiter.  This avoids the extra interaction required between the input and output port arbiters (as in PIM1) or between the output port arbiters (as in WFA).   Nevertheless, because a pair of input port arbiters shares the same set of input buffers via different read ports, the input port arbiters in a pair must synchronize to ensure that they do not choose the same packet.  However, because the synchronization is between pairs of input port arbiters located in close proximity, this is not hard to implement.  

Nominating a packet to only one output port also has the added benefit that a packet can be speculatively read out from an input buffer as soon as it is nominated by an input port arbiter (but before the output port arbitration is complete), much like the way direct-mapped caches allow processors to speculatively read out data before the address comparison completes [20].  Of course, the read is wasted if the output port does not select the specific packet that was speculatively read out. 

Second, SPAA can be implemented as a distributed router with the input and output port arbiters sitting right next to their corresponding ports.   In contrast, because of PIM1 and WFA’s high level of interaction between input and output ports, it is easier to implement PIM1 and WFA using a centralized connection matrix.  The distributed implementation of SPAA allows it to directly send input port nominations from the input to the output ports without an intervening connection matrix.  This helps reduce the number of cycles incurred by SPAA. 

Third, SPAA need only maintain a small list of in-flight packets—that is, only 16—because each input port can only nominate a maximum of one packet.  In contrast, aggressive and more complicated implementations of PIM1 and WFA would have required us to maintain state for 54 in-flight packets, which would complicate their implementation.  SPAA’s small number of in-flight packets (i.e., nominated from the input port, but not yet accepted by the output port) facilitates effective pipelining of SPAA.  Thus, unlike PIM1 and WFA, new input port arbitrations in SPAA can be restarted every cycle. 

Thus in summary, SPAA incurs only three cycles (Figure 4) for its arbitration compared to the four cycles required by PIM1 or WFA and SPAA can be pipelined effectively, so that an input port arbitration can be started every cycle.  SPAA’s three cycles consist of input port arbitration (i.e., nominate), transport from input to output port, and output port arbitration (Figure 4). 
SPAA’s Step 2 (Grant) selects packets based on the least-recently selected policy.  We call this SPAA-base.  In the next subsection, we discuss how SPAA can use the rotary rule to select an input port arbiter.  We call this SPAA-rotary. 

3.4 Rotary Rule

Under extremely heavy loads most multiprocessor networks suffer from tree saturation [28]
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[30], which can dramatically degrade a network’s performance beyond the saturation point (Figure 7).  Such tree saturation occurs when multiple packets contend for a single resource (e.g., a link between nodes) creating a hot spot.   Since only one packet can use the resource, other packets must wait.  These waiting packets occupy buffers and thus delay other packets, even though they may be destined for a completely different node and share only one link on their paths to their respective destinations.  This process continues and waiting packets delay other packets producing a tree of waiting packets that fans out from the original hot spot.   Eventually, this clogs the network bringing down the delivered throughput of the entire network. 





Figure 7.  Possible network behavior with increasing network load.  Network performance degrades rapidly beyond the saturation point.  

The 21364 network is no exception and can get saturated at extremely high load levels. Interestingly, the network produces a cyclic pattern of network link utilization with extremely high levels of uniform random input traffic.  This is because as the network gets saturated, it puts backpressure on the links in the tree. Eventually, this backpressure throttles the routers in the tree and forces them to avoid injecting new traffic, which causes the network congestion to clear up slowly.   The period of this cycle increases with the diameter of the network because it takes longer to fill up the buffers on the path and propagate the backpressure. 

Ideally, we would like network throughput to remain at the same level as exhibited at the saturation point, instead of degrading dramatically beyond the saturation point.   Most proposed solutions rely on throttling the input network load based on some estimate of congestion, so that the network never goes beyond the saturation point.   Lopez, et al. [21]
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[22] use the number of busy virtual channels in a router to estimate congestion.  Baydal, et al. [4] proposes an approach that counts a subset (free and useful) of virtual channel buffers to decide whether to throttle or not.  Other researchers (e.g., [34], [30], [38]) have proposed the use of a variety of global heuristics to determine congestion. 

Fortunately, the 21364 network has two properties that limit the network load.  First, a 21364 processor can have only 16 outstanding cache miss requests to remote memory or caches.  This limits the load the 21364 network can observe. 

Second, the 21364 is a “direct” network in which the same router is responsible for both new traffic (originating from the local ports, such as the cache port or memory controller ports) and cross-traffic between routers.  Thus, prioritizing the cross-traffic over new traffic generated from the local ports has the beneficial effect of both clearing the network congestion as well as throttling the input load into the network.   We call this prioritization policy the “Rotary Rule.”  The name is derived from the Massachusetts rotaries in which vehicles in the rotary has higher priority to exit than vehicles trying to enter the rotary. 

It is easy to implement the Rotary Rule for PIM1, WFA, and SPAA.  In PIM1 and SPAA, the output port arbiters would select packets nominated by the input port arbiters for the network ports before they select packets from the local ports.  Within the network ports, we use least-recently used selection policy.  In WFA, the selection of the first cell to start the arbitration process would follow the Rotary Rule.  Thus, cells connected to the input port arbiters for the network ports would get the highest priority to be the first cell from where the wavefronts will start.  In this paper, we only evaluate the Rotary Rule for WFA and SPAA.  We call these variants WFA-rotary and SPAA-rotary, respectively.   

The Rotary Rule’s prioritization of cross-traffic packets can create starvation in the network.   The 21364 router implements an anti-starvation algorithm for certain corner cases.  The Rotary Rule simply relies on this anti-starvation algorithm to clear any starvation caused by its prioritization policy.  The anti-starvation algorithm assigns two different colors to packets waiting at a router: an old color and a new color.  If the number of old colored packets exceed a threshold, the 21364 ensures that all the old colored packets are drained before any new colored packets are routed.   Further discussion of the anti-starvation algorithm is beyond the scope of this paper. 

The 21364 network provides the Rotary Rule as an optional mode programmable at boot time.  It is an optional mode because we believe most applications will not stress the network to the extent of pushing it into saturation.  Nevertheless, we provide it both as a “safety net” for the 21364 processor and as a mechanism that may have allowed its use in future processors with many more outstanding misses (e.g., the next generation Alpha 21464 processor would have had 64 outstanding misses). 

4. methodology

This section describes our performance model, traffic patterns, and performance metric. 

4.1 Performance Model

Our evaluation of the 21364’s arbitration algorithm choices is based on two kinds of performance models written in the Asim framework [15], unlike Bhuyan [5] or Peh and Dally [27], who had used analytical modeling to understand the behavior of arbiters and routers
. Our first model—what we call the standalone model—allows us to evaluate the matching capabilities of MCM, PIM, PIM1, WFA, and SPAA in a single 21364 router (just like a cache simulator would allow one to evaluate the cache miss ratio without any timing information). 

Our second model—what we call the timing model—is an extremely detailed performance model of the 21364 router. We have validated this model against a production-level performance model of the 21364 network architecture.  We have modeled the detailed timing characteristics of PIM1, WFA-base, WFA-rotary, SPAA-base, and SPAA-rotary using this timing model.   

We described most of the parameters of the timing runs in Section 2.2 and Section 3.  In addition, we assume 73 nanoseconds for the memory system’s response time, 25 cycles for the on-chip L2 cache’s response time, and 3 network clocks (running at 0.8 GHz) for latency on each network link.  Most of the results we present in this paper are for a 16-processor (4x4) network and a 64-processor (8x8) network.  Although the 21364 network only scales up to 128 processors, Section 5.3 examines results for a 144-processor (12x12) network to understand how the arbitration algorithms may scale for larger network configurations.  

4.2 Traffic Patterns

We evaluate our timing models using a mix of synthetic traffic patterns as opposed to real workloads.  Simulations of real workloads, such as database servers, would have helped us make more accurate predictions about the performance impact of the different arbitration algorithms.  Such simulation, however, would have required complex full-system simulation (including the operating system), which our modeling infrastructure is unable to handle today.   Trace-driven simulation would have been an alternative, but that also has its limitations [7].   

Nevertheless, synthetic workloads have two advantages.  First, they often tend to increase the contention for resources for sub-optimal/worst case performance scenarios [39].  Second, they represent communication patterns in many real-world applications [14].   

Recently, Towles and Dally [39] demonstrated a technique to construct synthetic traffic patterns that result in worst-case performance for oblivious routers.  Unfortunately, there is no known similar technique for adaptive routers, such as the 21364. 

Our synthetic patterns can be defined along two dimensions.   The first dimension selects the mix of coherence packets.   We use 70% two coherence hop transactions (3-flit request and a 19-flit block response) and 30% three coherence hop transactions (3-flit request, 3-flit forward, and a 19-flit block response) to model a mix of coherence traffic.  We, however, ignore traffic generated from cache replacements or invalidations to make our analysis simpler.
    Note that a coherence hop only specifies a single packet, which can take multiple router hops via the network. 

The second dimension selects the destination of the requests and forwards.    We use three patterns for such selection: uniform, bit-reversal, and perfect-shuffle.  If the bit-coordinate of the source processor can be represented as (an-1, an-2, ...a1,a0), then the destination bit-coordinates for bit-reversal and perfect-shuffle are (a0,a1,...,an-2,an-1) and (an-2,an-3,...,a0,an-1) respectively. 

4.3 Performance Metric

We use the Burton Normal Form (BNF) [14] to express the performance of our different arbitration algorithms.   A BNF graph uses observed latency as its vertical axis and delivered throughput as its horizontal axis.    For our BNF graphs, we use the average latency of a packet through the network as the vertical axis.   The minimum per-packet latency with a 4x4 network, uniform random distribution of destinations, and a 70/30 mix of 2-hop and 3-hop coherence transactions is about 45 ns (nanoseconds).   The 45 ns can be broken into 2.5 ns of local port latency, 34 ns of network transit latency for the first flit, and 8.5 nanoseconds of latency for the rest of a packet.   The last number is averaged across the different packet sizes for our coherence transaction mixes. 

We represent the delivered throughput as flits/router/ns (where ns = nanoseconds).   The maximum throughput is two flits/router/cycle because the 21364 router has two local ports to sink packets and only one flit can be delivered to a local port per cycle.  Thus, the maximum delivered throughput can be 2.4 flits/router/nanosecond (= 2 / 0.83).  In reality, however, the actual delivered throughput will be significantly lower because the network links are 33% slower than the processor and the network links often carry cross-traffic, whose residence time in the network increases with the size of the network. 

We ran each timing simulation for 75,000 cycles.  We have validated that simulation for this number of cycles is sufficient to predict the steady-state behavior of the network.

5. Results

This section presents our standalone, timing, and scaling results.  Although we present our results only for a subset of the network sizes and traffic patterns, our results are qualitatively similar across a wide spectrum of the design space. 
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Figure 8. Standalone comparison of matching capabilities of different arbitration algorithms for a single 21364 router with increasing router load for zero output port occupancy. The horizontal axis plots the input router load as a fraction of the load required to saturate MCM. 

5.1 Standalone Results

Figure 8 shows that when all output ports are free MCM, PIM, and WFA are indeed superior arbitration algorithms compared to PIM1 and SPAA.  We generated Figure 8 by loading up a single router with input packets and using the following assumptions:

· All arbitration algorithms take one cycle to execute.

· All output ports are free at the time of the arbitration.

· 50% of the traffic is local and destined for the local memory controller and I/O ports. The rest are destined uniformly for the other network ports. 

· The number of arbitration matches is averaged across 1000 iterations of the arbitration algorithms.   Because the traffic is generated randomly, in some cases even MCM, which exhaustively searches for the maximum number of matches, is not able to find a perfect match.  However, the number of matches found by MCM is usually very close to the maximum, i.e., seven (because there are seven output ports). 

· Although all algorithms execute in one cycle, they all follow the basic 21364 router constraints, such as adaptive routing within the minimum rectangle. 

Under the above assumptions, the number of matches found by WFA and PIM are almost close to that found by MCM.  PIM1 does slightly worse and SPAA is the worst.  At the MCM saturation load, the number of matches found by MCM, WFA, and PIM are 36% higher than that found by SPAA.  PIM1’s number of matches is 14% higher than SPAA’s. 


Figure 9.  Standalone comparison of matching capabilities of different arbitration algorithms for a single 21364 router with increasing output port occupancy at the MCM saturation load. 

Figure 9, however, shows that under realistic conditions the difference between the various arbitration algorithms reduces dramatically. Figure 9 plots the arbitration matches per cycle for the different algorithms for various levels of output port occupancy.   In the 21364 router, packet sizes range from 3 to 19 flits, so when a packet wins an arbitration, it occupies an output port for several cycles.   It is unnecessary to arbitrate for an output port while it is busy delivering a packet.   As the fraction of occupied output ports increases, the difference between the algorithms reduces and completely disappears when 75% of the output ports are occupied.  

Thus, under heavy loads (when output port occupancy is likely to be high), it does not matter which arbitration algorithm we choose.   Rather, it is better to choose an algorithm that is more suited to faster implementation.   We designed SPAA based on this observation. 

Another way to look at these results is that WFA and PIM’s matching capabilities are more suited to routers with significantly higher number of ports compared to what we have in the 21364 router.  

5.2 Timing Results

Figure 10 shows the performance of the five arbitration algorithms—PIM1, WFA-base, WFA-rotary, SPAA-base, and SPAA-rotary—for different network sizes and traffic patterns.  SPAA-base significantly outperforms both PIM1 and WFA-base, which perform similarly.   For example, in the 4x4 network, with random traffic SPAA-base provides about 11% higher throughput compared to PIM1 and WFA-base when the average packet latency is about 83 nanoseconds. Similarly, in the 8x8 network, with random traffic SPAA-base provides about 24% higher throughput compared to PIM1 and WFA-base when the average packet latency is about 122 nanoseconds.  The results for bit reversal and perfect shuffle for the 8x8 network are qualitatively similar. 

Figure 10 also shows that the Rotary Rule prevents both WFA-rotary and SPAA-rotary from performance degradation under heavy network loads.   The 4x4 network does not show saturation behavior, so the performance of WFA-base and SPAA-base are similar to WFA-rotary and SPAA-rotary respectively. In the 8x8 network, WFA-base and SPAA-base perform similar to WFA-rotary and SPAA-base respectively, until the network hits the saturation point.  Thereafter, the delivered throughput of both WFA-base and SPAA-base degrade rapidly, while WFA-rotary’s and SPAA-rotary’s delivered throughputs continue to increase.   

Thus, at about an average packet latency of 280 nanoseconds, WFA-rotary improves throughput by 16% over WFA-base and SPAA-rotary improves throughput by 43% over SPAA-base.  Note that WFA-base shows less performance degradation compared to SPAA-base.  We suspect this happens because the interaction between WFA’s output port arbiters (unlike in SPAA) makes the worst case behavior of WFA-base better than that of SPAA-base.  

Finally, pipelining provides SPAA a significant boost in performance compared to PIM1 and WFA (not shown here).  For example, if we could implement WFA as a three-cycle arbitration mechanism like SPAA, then pipelining is the key difference between WFA and SPAA.  In an 8x8 network, with random traffic SPAA provides a throughput boost of about 8% compared to such a configuration of WFA-base with 122 nanoseconds of average packet latency.   This shows pipelining the arbitration mechanism does help SPAA’s performance. 

Figure 10.  This figure shows the performance of the 21364 network with different arbitration algorithms, network sizes (4x4 and 8x8), and traffic patterns (Random, Bit Reversal, and Perfect Shuffle). 

5.3 Scaling Results

This section studies the performance of PIM1, WFA-rotary, and SPAA-rotary under three different scaling conditions: with twice the router pipeline length as in the 21364 router, with higher input load than 21364 can offer, and with a bigger network.   The router pipeline length could potentially double in future generations, given the scaling trends of technology today. Figure 11a shows the results for PIM1, WFA-rotary, and SPAA-rotary for a pipeline two times longer than and running at twice the frequency of the 21364 router’s pipeline.  The arbitration latencies for PIM1, WFA-rotary, and SPAA-rotary are 8, 8, and 6 cycles respectively.   As the figure shows, SPAA-rotary performs significantly better with longer pipelines because SPAA-rotary is pipelined, unlike the other two arbitration algorithms.   Thus, for example, at about 100 nanoseconds of average packet latency, SPAA-rotary provides greater than 60% higher throughput compared to PIM1 and WFA-rotary. 

Figure 11b shows the results for the three arbitration algorithms for an 8x8 network with higher network load.  Higher network load, in the form of greater number of outstanding misses, can be expected from future processors with deeper pipelines.   Hence, this figure assumes 64 outstanding misses, four times higher than that of the 21364 processor.   As the figure shows, even under such high network loads, SPAA-rotary outperforms both PIM1 and WFA-rotary.    Thus, for example, at about roughly 200 nanoseconds of average packet latency, SPAA-rotary provides roughly 13% higher throughput compared to WFA-rotary. 

Figure 11c shows the scaling results for the 21364 router for a 144-processor (12x12) network (Note: the 21364 network can only scale up to 128 processors).   Like the first two scaling results, SPAA-rotary outperforms both PIM1 and WFA-rotary significantly.  Thus, for a 200 nanoseconds average packet latency, SPAA-rotary provides an 18% higher throughput compared to WFA-rotary.  Interestingly, however, at extremely high loads, SPAA-rotary is unable to prevent throughput degradation under saturation, whereas WFA-rotary’s throughput continues to increase, possibly because of its synchronization between output port arbiters.  

6. Conclusions

Large-scale cache-coherent shared-memory machines have become common server machines.   Such machines often employ interconnection networks to allow communication between processors and memory modules.   These interconnection networks must deliver low latency and high bandwidth to effectively run demanding parallel applications. 

Interconnection networks usually consist of a fabric of interconnected routers, which receive packets arriving at their input ports and forward them to appropriate output ports.  Unfortunately, network packets moving through these routers are often delayed due to conflicting demand for resources, such as output ports or buffer space.  Hence, routers typically employ arbiters to resolve conflicting resource demands.   These arbiters try to maximize the number of matches between packets waiting at input ports and free output ports. 

Efficient design and implementation of these arbiters is critical to maximize network performance.  The 1.2 GHz implementation of the Alpha 21364 microprocessor’s on-chip router, which can connect up to 128 processors in a 2D torus, made the already difficult task of designing arbitration algorithms even more challenging.  Because the 21364’s implementation allowed very few logic levels—between 12 and 13 per clock cycle—we had to carefully weigh the complexity of an arbitration algorithm against its benefit.  


Figure 11.  Scaling Results for the 21364 router.  

This paper proposed a new arbitration algorithm called SPAA (Simple Pipelined Arbitration Algorithm), which is implemented in the 21364 router’s pipeline.  Simulation results showed that SPAA significantly outperforms two earlier well-known arbitration algorithms: PIM (Parallel Iterative Matching) and WFA (Wave-Front Arbiter), which is implemented in the SGI Spider switch.  Instead of PIM, which is iterative and would have obviously performed poorly in the 21364 router, we considered PIM1, which runs only one iteration of the PIM algorithm.   

SPAA outperformed PIM1 and WFA, even though both PIM1 and WFA have better matching capabilities than SPAA. This is because SPAA exhibits matching capabilities similar to PIM1 and WFA under realistic conditions when many output ports are busy, incurs fewer clock cycles to perform the arbitration, and can be pipelined effectively. We also demonstrated that SPAA will continue to deliver higher throughput compared to PIM1 and WFA, if the router were scaled to have twice the pipeline length, incur greater input load, or support bigger networks than the 21364 was designed for.

Additionally, we proposed a new prioritization policy called the Rotary Rule, which provided significant boost in network performance by preventing the network’s adverse performance degradation from saturation at high network loads.  The Rotary Rule prioritizes the movement of network packets already in the network over packets recently generated from the processor ports.  We demonstrated the effectiveness of the Rotary Rule with WFA and SPAA.   The Alpha 21364 router provides the Rotary Rule as an optional mode programmable at boot-time.   

The arbitration algorithm choice for the Alpha 21364 router depends largely on its architectural constraints.   The arbitration algorithm did not need to be as aggressive because of a maximum of two output port choices for each packet, per-packet arbitration, and virtual cut-through routing.  Greater routing freedom, flit-level arbitration, and wormhole routing (with shallow buffering) may reduce the advantage of SPAA over PIM1 and WFA. 
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� This measurement was done using SPAA, which is explained later. 


� This is only true for non-I/O packets.  Read and Write I/O packets only route in the deadlock-free channels to adhere to the Alpha 21364’s I/O ordering rules. 


� The 21364 router’s input and output port arbiters are also referred to as local arbiters (LA) and global arbiters (GA), respectively � REF _Ref2496566 \r \h ��[26]�.   


� Bhuyan’s paper pre-dates PIM1 and WFA.   Peh and Dally focused on developing analytical models for router pipelines, but did not compare the performance of different arbitration algorithms. 


� The 21364 processor can have 16 outstanding cache replacement requests. 
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351.5459388606

238.5934198618

295.3235961452

225.053317865

361.4842689606

360.4232288287

248.7949063257

293.8701421972

236.9588319249

355.523469186

365.8187871233

254.0538233072

305.4843375347

243.9393149866

358.4237991872

365.8814383746

250.228813243

311.0131648771

247.6421394762

372.047306804

366.6908889224

248.2065137126

323.0175652606

250.9957630348

393.7379960966

391.672417673

272.5799836567

356.5435555775

281.304697978



perfectshuffle8x8

		# pim1_l3g1

		0.1384375375		86.2372354325

		0.2078333133		91.0042660721

		0.2776823573		99.2254603023

		0.3456663267		115.1942416853

		0.403951158		205.5299449937

		0.4145543322		279.6519962202

		0.4160893936		325.7128030565

		0.4141943178		334.3215268053

		0.4166299152		342.3896030458

		0.4145208308		356.5650281948

		0.4121332353		361.4842689606

		0.4181567263		355.523469186

		0.4200190508		358.4237991872

		0.4154886195		372.047306804

		0.4244722289		393.7379960966

		# wfa_rr_l3g1

		0.1384092864		86.2448373843

		0.2078793152		91.2668487942

		0.2776373555		99.0788459846

		0.3466603664		114.8393668991

		0.4039146566		207.2446308568

		0.4144318273		278.4543168017

		0.4155173707		327.432642955

		0.416925677		338.8865758604

		0.4088336033		345.3882343085

		0.4170919337		351.5459388606

		0.414100314		360.4232288287

		0.4129967699		365.8187871233

		0.4162113985		365.8814383746

		0.4208043322		366.6908889224

		0.4305324713		391.672417673

		# wfa_l3g1

		0.1382060282		85.9359312343

		0.2077103084		90.7159598378

		0.2780903736		98.683294452

		0.3454843194		113.5771301834

		0.3982449298		157.3974925306

		0.4155386215		193.2632711606

		0.4227381595		222.5865103513

		0.4281266251		234.9891529002

		0.4304019661		237.2461223139

		0.4302522101		238.5934198618

		0.4390415617		248.7949063257

		0.4406701268		254.0538233072

		0.4359061862		250.228813243

		0.4365212108		248.2065137126

		0.4510300412		272.5799836567

		# spaa_lrs+lrs_l1t1g1

		0.1388068023		76.301713206

		0.2068332733		79.8152602472

		0.2770143306		84.8096840526

		0.3456648266		93.7395129357

		0.4163191528		116.0036792476

		0.4575368015		177.5785947764

		0.4678059622		262.1439552002

		0.4679484679		270.3148632547

		0.4672801912		280.8676052459

		0.4625225009		295.3235961452

		0.4740544622		293.8701421972

		0.4628277631		305.4843375347

		0.4582688308		311.0131648771

		0.4536408956		323.0175652606

		0.4236861974		356.5435555775

		# spaa_lrs+rotary_l1t1g1

		0.1383887856		76.1883325693

		0.2083423337		79.7149118694

		0.2770390816		85.1092812348

		0.3463513541		93.2144854252

		0.4153908656		114.6187966881

		0.4493102224		147.0019793655

		0.4688972559		185.7505648481

		0.4713431037		200.836249763

		0.4726146546		213.8754214341

		0.478125875		225.053317865

		0.4866394656		236.9588319249

		0.4864037061		243.9393149866

		0.4909651386		247.6421394762

		0.4951543062		250.9957630348

		0.5236844474		281.304697978
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PIM1
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WFA-rotary
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8x8, Perfect Shuffle
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Chart2

		0		0		0		0		0

		0.25		0.25		0.25		0.25		0.25

		0.5		0.5		0.5		0.5		0.5

		0.75		0.75		0.75		0.75		0.75



MCM

WFA

PIM

PIM1

SPAA

Fraction of Output Ports Occupied

# Arbitration Matches Per Cycle

6.83333

6.80427

6.79431

5.67478

4.97227

5.1448

5.10564

5.10244

4.4596

4.14551

3.426

3.40411

3.40329

3.10078

3.01353

1.7188

1.69667

1.70373

1.62038

1.61562



stdalone

				MCM		WFA		PIM		PIM1		SPAA

		0		6.83333		6.80427		6.79431		5.67478		4.97227

		0.25		5.1448		5.10564		5.10244		4.4596		4.14551

		0.5		3.426		3.40411		3.40329		3.10078		3.01353

		0.75		1.7188		1.69667		1.70373		1.62038		1.61562





stdalone
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Chart2

		0.1388338034		0.1377467599		0.1385957938

		0.2084098364		0.2072360394		0.2077863115

		0.2775323513		0.276400306		0.275798782

		0.3459025861		0.3466518661		0.3453415637

		0.4139175567		0.4142448198		0.4144860794

		0.4621062342		0.461400706		0.4604829193

		0.5178374635		0.5182027281		0.5183187327

		0.4490534621		0.5450973039		0.5470783831

				0.558948858		0.5613857054

				0.5855279211		0.5926062042

						0.6228546642

						0.6417909216

						0.6579660686



PIM1

WFA-rotary

SPAA-rotary

Delivered flits/router/ns

Average Packet Latency (ns)

64 requests, 8x8,Random Traffic

86.046918812

85.7139816273

76.1125710745

90.3174624613

90.1246932681

79.1478616828

96.8851121234

95.9711245024

83.5293052795

106.427505389

105.1352801686

89.3537356426

121.7044313911

118.7060748434

98.1142314595

140.1954707185

134.5215520039

106.1738388449

185.8407592954

167.7280497824

121.5732370874

345.6830456643

197.6179825942

134.1640904366

222.2137731395

141.7996559092

309.9542077622

164.4125661761

201.8688637392

248.6024831357

320.665323141



cbox64_8x8

		# pim1_l3g1

		0.1388338034		86.046918812

		0.2084098364		90.3174624613

		0.2775323513		96.8851121234

		0.3459025861		106.427505389

		0.4139175567		121.7044313911

		0.4621062342		140.1954707185

		0.5178374635		185.8407592954

		0.4490534621		345.6830456643

		# wfa_l3g1

		0.1377467599		85.7139816273

		0.2072360394		90.1246932681

		0.276400306		95.9711245024

		0.3466518661		105.1352801686

		0.4142448198		118.7060748434

		0.461400706		134.5215520039

		0.5182027281		167.7280497824

		0.5450973039		197.6179825942

		0.558948858		222.2137731395

		0.5855279211		309.9542077622

		# spaa_lrs+rotary_l1t1g1

		0.1385957938		76.1125710745

		0.2077863115		79.1478616828

		0.275798782		83.5293052795

		0.3453415637		89.3537356426

		0.4144860794		98.1142314595

		0.4604829193		106.1738388449

		0.5183187327		121.5732370874

		0.5470783831		134.1640904366

		0.5613857054		141.7996559092

		0.5926062042		164.4125661761

		0.6228546642		201.8688637392

		0.6417909216		248.6024831357

		0.6579660686		320.665323141





cbox64_8x8
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Chart2

		0.1381225249		0.1397185887		0.1380705228		0.1377595104		0.1389825593

		0.2065462619		0.2074042962		0.2081553262		0.2081083243		0.2074352974

		0.2764280571		0.2786351454		0.2772790912		0.278299132		0.2791141646

		0.4128805152		0.4165686627		0.4171456858		0.4143955758		0.4170226809

		0.518224729		0.5209038362		0.5191727669		0.5204518181		0.5185237409

		0.5910606424		0.5984789392		0.5929827193		0.5954308172		0.5948137926

		0.6940927637		0.6941907676		0.6959368375		0.6924596984		0.6948917957

		0.8337403496		0.8311832473		0.8342793712		0.8324542982		0.8325663027

		0.9244669787		0.9209638386		0.926450058		0.9321872875		0.9327583103

		0.9630215209		0.9695827833		0.9807442298		1.0170726829		1.0233519341

		0.980951238		0.986650466		0.9973288932		1.0601404056		1.0657086283

		0.984525381		0.9905166207		1.0050402016		1.0754160166		1.0797821913

		0.9931617265		0.9977179087		1.0076063043		1.0864474579		1.0882765311

		0.9960928437		1.0051812072		1.0175527021		1.0955638226		1.1011620465

		1.0057352294		1.0126035041		1.0226329053		1.1089913597		1.1114104564



PIM1

WFA-base

WFA-rotary

SPAA-base

SPAA-rotary

Delivered flits/router/ns

Average Packet Latency (ns)

4x4, Random Traffic

53.4568644666

53.461077919

53.4492746542

47.9400164166

47.5467818724

54.7845130292

55.0126677145

54.9058256316

48.8400428524

48.7540389982

56.6004682838

56.936215959

56.4249994035

50.2025764568

50.1182342786

60.8242678227

61.1715051487

61.1813819898

53.4546358108

53.1328688171

65.8224712149

65.6596491279

65.299316026

56.4616180495

56.5296498556

69.9796883192

70.4652661085

69.8485088948

59.7524019579

59.5206825718

78.461743551

78.7048667786

77.5591510704

65.0296636311

64.7006695661

97.9589080118

97.2014625731

95.8989384591

75.7382955093

75.1845357551

121.9584925227

119.422574364

118.1889480224

88.632938936

86.821252596

139.2180018136

137.1015103533

136.9023712561

105.5722444064

106.9725461808

147.6610608657

145.9520294511

145.4439753231

118.2405053079

116.8179689714

150.5429623554

149.1464682263

149.6305792842

123.0522268231

122.2373743863

153.1340004291

152.5480567031

153.9549522864

128.3408034594

127.0360570383

155.5445582499

156.4743602157

158.0658085857

131.5175764381

131.0687544817

161.5443164881

161.1242706411

161.6602623308

136.2930135239

136.0294440362



basic4x4-cbox16

		# pim1_l3g1

		0.1381225249		53.4568644666

		0.2065462619		54.7845130292

		0.2764280571		56.6004682838

		0.4128805152		60.8242678227

		0.518224729		65.8224712149

		0.5910606424		69.9796883192

		0.6940927637		78.461743551

		0.8337403496		97.9589080118

		0.9244669787		121.9584925227

		0.9630215209		139.2180018136

		0.980951238		147.6610608657

		0.984525381		150.5429623554

		0.9931617265		153.1340004291

		0.9960928437		155.5445582499

		1.0057352294		161.5443164881

		# wfa_rr_l3g1

		0.1397185887		53.461077919

		0.2074042962		55.0126677145

		0.2786351454		56.936215959

		0.4165686627		61.1715051487

		0.5209038362		65.6596491279

		0.5984789392		70.4652661085

		0.6941907676		78.7048667786

		0.8311832473		97.2014625731

		0.9209638386		119.422574364

		0.9695827833		137.1015103533

		0.986650466		145.9520294511

		0.9905166207		149.1464682263

		0.9977179087		152.5480567031

		1.0051812072		156.4743602157

		1.0126035041		161.1242706411

		# wfa_l3g1

		0.1380705228		53.4492746542

		0.2081553262		54.9058256316

		0.2772790912		56.4249994035

		0.4171456858		61.1813819898

		0.5191727669		65.299316026

		0.5929827193		69.8485088948

		0.6959368375		77.5591510704

		0.8342793712		95.8989384591

		0.926450058		118.1889480224

		0.9807442298		136.9023712561

		0.9973288932		145.4439753231

		1.0050402016		149.6305792842

		1.0076063043		153.9549522864

		1.0175527021		158.0658085857

		1.0226329053		161.6602623308

		# spaa_lrs+lrs_l1t1g1

		0.1377595104		47.9400164166

		0.2081083243		48.8400428524

		0.278299132		50.2025764568

		0.4143955758		53.4546358108

		0.5204518181		56.4616180495

		0.5954308172		59.7524019579

		0.6924596984		65.0296636311

		0.8324542982		75.7382955093

		0.9321872875		88.632938936

		1.0170726829		105.5722444064

		1.0601404056		118.2405053079

		1.0754160166		123.0522268231

		1.0864474579		128.3408034594

		1.0955638226		131.5175764381

		1.1089913597		136.2930135239

		# spaa_lrs+rotary_l1t1g1

		0.1389825593		47.5467818724

		0.2074352974		48.7540389982

		0.2791141646		50.1182342786

		0.4170226809		53.1328688171

		0.5185237409		56.5296498556

		0.5948137926		59.5206825718

		0.6948917957		64.7006695661

		0.8325663027		75.1845357551

		0.9327583103		86.821252596

		1.0233519341		106.9725461808

		1.0657086283		116.8179689714

		1.0797821913		122.2373743863

		1.0882765311		127.0360570383

		1.1011620465		131.0687544817

		1.1114104564		136.0294440362





basic4x4-cbox16
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Chart1

		0.1392933217		0.1384860394		0.1381327753		0.1382215289		0.1378727649

		0.2073692948		0.2088133525		0.2076345554		0.207849564		0.2075163007

		0.2759102864		0.2764700588		0.2768890756		0.2770723329		0.2770670827

		0.3461593464		0.3453430637		0.3461015941		0.3467593704		0.3456203248

		0.4154188668		0.4154678687		0.4153578643		0.4164589084		0.4146225849

		0.4618662246		0.461975979		0.4604706688		0.4621444858		0.4627300092

		0.4828050622		0.4835015901		0.5038794052		0.5148520941		0.5173371935

		0.4717586203		0.4807872315		0.512274241		0.5276963579		0.537151236

		0.4788874055		0.4757455298		0.5177944618		0.5336065943		0.5464891096

		0.4742907216		0.4752472599		0.5197852914		0.540124105		0.5584978399

		0.4635377915		0.4649575983		0.522350144		0.5413971559		0.5664964099

		0.4633835353		0.4628100124		0.5226386555		0.5371942378		0.5719983799

		0.466624915		0.4625562523		0.5242942218		0.5249564983		0.5728804152

		0.4663644046		0.4606714269		0.5254112665		0.5127622605		0.5762025481

		0.459824143		0.4588198528		0.5309889896		0.5198137926		0.5874349974



PIM1

WFA-base

WFA-rotary

SPAA-base

SPAA-rotary

Delivered flits/router/ns

Average Packet Latency (ns)

8x8, Bit Reversal

89.353904819

89.2353973362

89.1531561135

78.9229630188

78.8309278215

93.8992438092

94.2045853175

93.8258961397

82.4824262709

82.3428040232

100.8353745309

101.383636736

100.6387932126

87.4875893946

87.1632830825

113.276553688

113.4062100026

111.3314497125

95.1035167052

94.2407744099

138.4132506563

136.5941640182

131.7684371629

108.547796243

105.6498053125

180.023491032

177.4450043323

159.9989247341

124.6694472083

119.1074175821

270.9279964447

269.5659915745

222.4462201203

175.6179439484

151.4936881278

300.5630669032

293.2472624603

242.0425536048

198.6319058506

174.6018364942

301.290525812

305.1572035948

254.3027008279

213.8933686317

186.0496847887

314.6263031103

312.5523336467

264.0764682074

229.7973344126

208.2953178629

327.5635189893

325.6597249562

273.721370527

243.2599286314

224.080201368

334.8754439109

333.3430485775

276.1414724928

250.4002068596

231.6901429736

334.8511322202

340.0556516594

279.6866990201

266.9823658934

235.281084211

341.1118114614

342.1572740667

284.2568463986

275.317703151

243.6099627459

359.2822245871

357.0809165329

300.8104422036

295.2769300557

271.4931036877



bitreversal8x8

		# pim1_l3g1

		0.1392933217		89.353904819

		0.2073692948		93.8992438092

		0.2759102864		100.8353745309

		0.3461593464		113.276553688

		0.4154188668		138.4132506563

		0.4618662246		180.023491032

		0.4828050622		270.9279964447

		0.4717586203		300.5630669032

		0.4788874055		301.290525812

		0.4742907216		314.6263031103

		0.4635377915		327.5635189893

		0.4633835353		334.8754439109

		0.466624915		334.8511322202

		0.4663644046		341.1118114614

		0.459824143		359.2822245871

		# wfa_rr_l3g1

		0.1384860394		89.2353973362

		0.2088133525		94.2045853175

		0.2764700588		101.383636736

		0.3453430637		113.4062100026

		0.4154678687		136.5941640182

		0.461975979		177.4450043323

		0.4835015901		269.5659915745

		0.4807872315		293.2472624603

		0.4757455298		305.1572035948

		0.4752472599		312.5523336467

		0.4649575983		325.6597249562

		0.4628100124		333.3430485775

		0.4625562523		340.0556516594

		0.4606714269		342.1572740667

		0.4588198528		357.0809165329

		# wfa_l3g1

		0.1381327753		89.1531561135

		0.2076345554		93.8258961397

		0.2768890756		100.6387932126

		0.3461015941		111.3314497125

		0.4153578643		131.7684371629

		0.4604706688		159.9989247341

		0.5038794052		222.4462201203

		0.512274241		242.0425536048

		0.5177944618		254.3027008279

		0.5197852914		264.0764682074

		0.522350144		273.721370527

		0.5226386555		276.1414724928

		0.5242942218		279.6866990201

		0.5254112665		284.2568463986

		0.5309889896		300.8104422036

		# spaa_lrs+lrs_l1t1g1

		0.1382215289		78.9229630188

		0.207849564		82.4824262709

		0.2770723329		87.4875893946

		0.3467593704		95.1035167052

		0.4164589084		108.547796243

		0.4621444858		124.6694472083

		0.5148520941		175.6179439484

		0.5276963579		198.6319058506

		0.5336065943		213.8933686317

		0.540124105		229.7973344126

		0.5413971559		243.2599286314

		0.5371942378		250.4002068596

		0.5249564983		266.9823658934

		0.5127622605		275.317703151

		0.5198137926		295.2769300557

		# spaa_lrs+rotary_l1t1g1

		0.1378727649		78.8309278215

		0.2075163007		82.3428040232

		0.2770670827		87.1632830825

		0.3456203248		94.2407744099

		0.4146225849		105.6498053125

		0.4627300092		119.1074175821

		0.5173371935		151.4936881278

		0.537151236		174.6018364942

		0.5464891096		186.0496847887

		0.5584978399		208.2953178629

		0.5664964099		224.080201368

		0.5719983799		231.6901429736

		0.5728804152		235.281084211

		0.5762025481		243.6099627459

		0.5874349974		271.4931036877





bitreversal8x8
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Chart1

		0.1388338034		0.1378442638		0.1377467599		0.1386075443		0.1385957938

		0.2084098364		0.207899066		0.2072360394		0.2083518341		0.2077863115

		0.2775323513		0.2783563843		0.276400306		0.2768578243		0.275798782

		0.3459025861		0.3456915777		0.3466518661		0.3480281711		0.3453415637

		0.4139175567		0.4144968299		0.4142448198		0.4157281291		0.4144860794

		0.4621062342		0.4620189808		0.461400706		0.4605404216		0.4604829193

		0.5186722469		0.5186432457		0.5206945778		0.5193982759		0.5183187327

		0.5215396116		0.5066855174		0.5441340154		0.5451480559		0.5470783831

		0.5073067923		0.4952485599		0.5590778631		0.5604901696		0.5613857054

		0.50900061		0.4995384815		0.5724821493		0.5922616905		0.592050182

		0.5081840774		0.4944235269		0.5791286651		0.6128727649		0.6180817233

		0.5046426857		0.4896815873		0.5800312012		0.6180332213		0.6281393756

		0.5003600144		0.4922481899		0.5827588104		0.4587168487		0.6339343574

		0.4992359694		0.4876675067		0.5842796212		0.482400046		0.6403396136

		0.4994094764		0.476349054		0.5917231689				0.6547481899



PIM1

WFA-base

WFA-rotary

SPAA-base

SPAA-rotary

Delivered flits/router/ns

Average Packet Latency (ns)

8x8, Random Traffic

86.046918812

86.0304146587

85.7139816273

76.1358579989

76.1125710745

90.3174624613

90.5355886738

90.1246932681

79.5019262362

79.1478616828

96.8851121234

97.1944541679

95.9711245024

83.8006448595

83.5293052795

106.427505389

106.3082666996

105.1352801686

90.4019904942

89.3537356426

121.7044313911

122.4076837512

118.7060748434

99.557563361

98.1142314595

140.1954707185

140.8514059154

134.5215520039

108.5291555962

106.1738388449

185.5056574192

185.2849386692

171.2206460433

127.8712626086

121.5732370874

266.3318560352

272.7504391596

195.6113354322

140.7008848405

134.1640904366

296.5463553499

298.01649088

217.0676512489

150.7138078835

141.7996559092

310.3454669278

311.1056569849

250.6132066452

180.3373900709

163.3813073606

322.0844683869

313.4822887594

270.5896143184

216.2087624343

193.9537083098

320.5869431992

323.8788981336

276.478583119

231.4851651769

213.9531361686

335.1417786234

328.7476624009

281.3916218399

280.4446803646

226.1596716426

336.268980681

327.6892004124

287.5470298404

283.8952795851

236.7360481699

359.0072639543

345.466716512

317.9699036022

278.5661535895



basic8x8-cbox16

		# pim1_l3g1

		0.1388338034		86.046918812

		0.2084098364		90.3174624613

		0.2775323513		96.8851121234

		0.3459025861		106.427505389

		0.4139175567		121.7044313911

		0.4621062342		140.1954707185

		0.5186722469		185.5056574192

		0.5215396116		266.3318560352

		0.5073067923		296.5463553499

		0.50900061		310.3454669278

		0.5081840774		322.0844683869

		0.5046426857		320.5869431992

		0.5003600144		335.1417786234

		0.4992359694		336.268980681

		0.4994094764		359.0072639543

		# wfa_rr_l3g1

		0.1378442638		86.0304146587

		0.207899066		90.5355886738

		0.2783563843		97.1944541679

		0.3456915777		106.3082666996

		0.4144968299		122.4076837512

		0.4620189808		140.8514059154

		0.5186432457		185.2849386692

		0.5066855174		272.7504391596

		0.4952485599		298.01649088

		0.4995384815		311.1056569849

		0.4944235269		313.4822887594

		0.4896815873		323.8788981336

		0.4922481899		328.7476624009

		0.4876675067		327.6892004124

		0.476349054		345.466716512

		# wfa_l3g1

		0.1377467599		85.7139816273

		0.2072360394		90.1246932681

		0.276400306		95.9711245024

		0.3466518661		105.1352801686

		0.4142448198		118.7060748434

		0.461400706		134.5215520039

		0.5206945778		171.2206460433

		0.5441340154		195.6113354322

		0.5590778631		217.0676512489

		0.5724821493		250.6132066452

		0.5791286651		270.5896143184

		0.5800312012		276.478583119

		0.5827588104		281.3916218399

		0.5842796212		287.5470298404

		0.5917231689		317.9699036022

		# spaa_lrs+lrs_l1t1g1

		0.1386075443		76.1358579989

		0.2083518341		79.5019262362

		0.2768578243		83.8006448595

		0.3480281711		90.4019904942

		0.4157281291		99.557563361

		0.4605404216		108.5291555962

		0.5193982759		127.8712626086

		0.5451480559		140.7008848405

		0.5604901696		150.7138078835

		0.5922616905		180.3373900709

		0.6128727649		216.2087624343

		0.6180332213		231.4851651769

		0.4587168487		280.4446803646

		0.482400046		283.8952795851

		# spaa_lrs+rotary_l1t1g1

		0.1385957938		76.1125710745

		0.2077863115		79.1478616828

		0.275798782		83.5293052795

		0.3453415637		89.3537356426

		0.4144860794		98.1142314595

		0.4604829193		106.1738388449

		0.5183187327		121.5732370874

		0.5470783831		134.1640904366

		0.5613857054		141.7996559092

		0.592050182		163.3813073606

		0.6180817233		193.9537083098

		0.6281393756		213.9531361686

		0.6339343574		226.1596716426

		0.6403396136		236.7360481699

		0.6547481899		278.5661535895





basic8x8-cbox16
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PIM1
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Chart5

		0.07		0.07		0.07		0.07		0.07

		0.13		0.13		0.13		0.13		0.13

		0.2		0.2		0.2		0.2		0.2

		0.27		0.27		0.27		0.27		0.27

		0.33		0.33		0.33		0.33		0.33

		0.4		0.4		0.4		0.4		0.4

		0.47		0.47		0.47		0.47		0.47

		0.53		0.53		0.53		0.53		0.53

		0.6		0.6		0.6		0.6		0.6

		0.67		0.67		0.67		0.67		0.67

		1		1		1		1		1



MCM

WFA

PIM

PIM1

SPAA

Fraction of MCM Saturation Load

# Arbitration Matches Per Cycle

5.0864

4.98827

4.75496

4.63138

4.04782

6.2046

6.12182

5.97051

5.33167

4.64944

6.4814

6.44622

6.33582

5.49947

4.78444

6.5982

6.57609

6.50271

5.56011

4.84429

6.666

6.64264

6.58042

5.5914

4.89391

6.6888

6.68278

6.634

5.61284

4.90824

6.7274

6.71849

6.67929

5.62369

4.92284

6.74

6.73269

6.70642

5.63996

4.94222

6.7548

6.75287

6.72569

5.64184

4.94033

6.74

6.76409

6.74244

5.65518

4.95207

6.83333

6.80427

6.79431

5.67478

4.97227



stdalone.rp2.ob0

				MCM		WFA		PIM		PIM1		SPAA

		0.07		5.0864		4.98827		4.75496		4.63138		4.04782

		0.13		6.2046		6.12182		5.97051		5.33167		4.64944

		0.2		6.4814		6.44622		6.33582		5.49947		4.78444

		0.27		6.5982		6.57609		6.50271		5.56011		4.84429

		0.33		6.666		6.64264		6.58042		5.5914		4.89391

		0.4		6.6888		6.68278		6.634		5.61284		4.90824

		0.47		6.7274		6.71849		6.67929		5.62369		4.92284

		0.53		6.74		6.73269		6.70642		5.63996		4.94222

		0.6		6.7548		6.75287		6.72569		5.64184		4.94033

		0.67		6.74		6.76409		6.74244		5.65518		4.95207

		1		6.83333		6.80427		6.79431		5.67478		4.97227
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