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1. Introduction

Radiation-induced soft errors have emerged as a key challenge
in computer system design. Exponentially increasing transistor
counts will drive per-chip fault rates correspondingly higher unless
new technologies are employed. If our industry is to continue to
provide customers with the level of reliability they expect, micro-
processor architects must address this challenge directly. This
effort has two parts. First, architects must understand the impact of
soft errors on their designs. Second, they must select judiciously
from among available techniques to reduce this impact in order to
meet their reliability targets with minimum overhead.

The research community can play a significant role in both of
these areas. On the first front, we must develop better conceptual
frameworks, analysis techniques, and software tools to advance
both intuitive understanding and quantitative measurement of how
soft errors affect system behavior. On the second front, we must
expand and characterize the space of soft error avoidance, detec-
tion, and recovery techniques so that solutions are available to
reach various reliability targets within realistic performance,
power, area, and complexity constraints.

To provide a foundation for these efforts, this paper gives a
broad overview of the soft error problem from an architectural per-
spective. We start with basic definitions (Section 2) followed by a
description of techniques to compute the soft error rate (Section 3).
Then, we summarize techniques used to reduce the soft error rate
(Section 4). Section 5 describes problems we face with double-bit
errors. Finally, in Section 6 we outline future directions for archi-
tecture research in soft errors. Table 1 provides a summary of acro-
nyms used in this paper.

2. Background and Metrics

Transient faults arise from energetic particles—such as neu-
trons from cosmic rays and alpha particles from packaging mate-
rial—generating electron-hole pairs as they pass through a
semiconductor device. Transistor source and diffusion nodes can
collect these charges. A sufficient amount of accumulated charge
may invert the state of a logic device—such as an SRAM cell, a
latch, or a gate—thereby introducing a logical fault into the cir-
cuit’s operation. Because this type of fault does not reflect a per-
manent failure, it is termed soft or transient.

Current trends suggest that soft errors from particle strikes will
be an increasing burden for microprocessor designers in future.
The raw error rate per device (e.g., latch, SRAM cell) in a bulk
CMOS process is projected to remain roughly constant or decrease
slightly for the next several technology generations [6][7]. Thus,
unless we add more extensive error protection mechanisms or use
a more robust technology (such as SOI), a processor’s error rate
will grow in direct proportion to the number of devices we add to a
processor in each succeeding generation. In contrast, however, by
slowing the reduction of cell capacitance and supply voltage,
DRAM vendors have managed to reduce the soft error rate per bit
with every technology generation [2].
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2.1. SDC & DUE

Figure 1 illustrates the possible outcomes of a single-bit fault.
Outcomes labeled 1-3 indicate non-error conditions. The most
insidious form of error is silent data corruption (SDC) (outcome
4), where a fault induces the system to generate erroneous outputs.
To avoid SDC, designers often employ basic error detection mech-
anisms, such as parity.

With the ability to detect a fault but not correct it, we avoid
generating incorrect outputs, but cannot recover when an error
occurs. In other words, simple error detection does not reduce the
overall error rate, but does provide fail-stop behavior and thereby
avoids any data corruption. We call errors in this category detected
unrecoverable errors (DUE). Currently, the industry specifies soft
error rates in terms of SDC and DUE numbers.

We further subdivide DUE events according to whether the
detected fault would have affected the final outcome of the execu-
tion. We call benign detected faults false DUE events (outcome 5
of Figure 1) and others true DUE events (outcome 6). A conserva-
tive system that signals all detected faults as processor failures will
unnecessarily raise the DUE rate by failing on false DUE events.
Alternatively, if the processor can identify false DUE events (e.g.,
the fault corrupted only the result of a wrong-path instruction),
then it can suppress the error signal.

DUE events can also be divided into process-kill and system-
kill categories (not shown in Figure 1). In some cases, such as a
parity error on an architectural register, an operating system (OS)
can isolate the error to a specific process or set of processes. The
OS can then kill the affected process or processes but leave the rest
of the system running. We call such a DUE event process-kill
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Figure 1. Classification of the possible outcomes of a
faulty bit in a microprocessor. SDC = silent data corrup-
tion. DUE = detected unrecoverable error.
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Table 1: Glossary of Acronyms

Term Explanation

FIT Failure in Time, 1 FIT = 1 failure in a billion hours
MTTF Mean Time to Failure

SER Soft Error Rate

SDC Silent Data Corruption

DUE Detected Unrecoverable Error

ACE Architecturally Correct Execution

un-ACE Unnecessary for Architecturally Correct Execution
AVF Architectural Vulnerability Factor

TVF Timing Vulnerability Factor

PVF Propagation Vulnerability Factor

DUE. The remaining DUE events fall into the system-kill DUE
category, as the only recourse is to bring down the entire system.

2.2. FIT & MTTF

Both SDC and DUE rates are typically expressed in FIT (Fail-
ure(s) in Time). One FIT signifies one error in a billion (109) hours.
FIT rates are additive, so we can compute the SDC or DUE FIT
rate of a chip or system by summing the SDC or DUE FIT rates of
all its components. The sum of SDC and DUE FIT is usually
referred to as the soft error rate (SER) of a chip.

The additive property of FIT makes it convenient for calcula-
tions, but Mean Time to Failure (MTTF) is often more intuitive.
MTTF is inversely related to FIT. A FIT rate of 1000 is equivalent
to MTTF of 114 years (= 10%/ (1000 X 24 X 365)).

Both MTTF and FIT are defined relative to the domain over
which the corresponding FIT contribution is computed. For exam-
ple, the FIT rate of a complete computer system can be quite low
even though individual system components have a higher FIT rate,
e.g., as in a triple-modular redundant system (see Section 4.3.2).

Vendors typically set soft-error-rate budgets for their chips or
systems based on target market requirements. For example, IBM
targets 114 SDC FIT (1000 yr MTTF), 4,566 system-kill DUE FIT
(25 yr MTTF), and 11,415 process-kill DUE FIT (10 yr MTTF) for
its Power4 systems [3]. The absolute rates and the relative impor-
tance of SDC and DUE depend on the target market. A system
with extensive error detection mechanisms will have a low SDC
FIT rate but a higher DUE FIT rate, while only machines with
comprehensive fault recovery schemes will have low rates for both
SDC and DUE FIT.

3. Computing SDC & DUE FIT

A key question for a design team is whether their chip or sys-
tem meets its SDC and DUE FIT budgets. The soft error rate of a
chip or its components can be measured via accelerated (and some-
what expensive) neutron beam tests in cyclotrons or alpha particle
tests using radioactive Thorium foils. Of course, these techniques
require a functioning chip, at which point it is expensive and possi-
bly too late to correct any reliability problems. In this paper, we
focus on modeling and computing—rather than measuring—the
soft error rate of a chip.

As discussed above, the SDC and DUE FIT rates of a chip
can be computed by summing the contributions of each compo-
nent. Each component FIT rate is the product of two factors: a raw
device error rate, which indicates the rate of transient-fault-
induced state changes, and the device’s architectural vulnerability
factor (AVF), which is the probability that a state change in the
device leads to an architecturally visible SDC or DUE error. The

next section discusses the device error rate, while the following
section describes the SDC and DUE AVFs.

3.1. Device Error Rate

The device error rate (measured in FIT) is the product of the
particle flux and the underlying circuit error rate determined by the
technology and implementation. To the first order, the error rate is
directly proportional to the particle flux rate. Alpha particles typi-
cally arise from contamination in the packaging material, solder,
etc. Special shielding materials can dramatically reduce the impact
of alpha particles on semiconductor devices. Terrestrial neutrons
arise when cosmic rays coming from deep space interact with the
earth’s atmosphere. Several feet of concrete are required for neu-
tron shielding, which is impractical for most applications. Neutron
flux increases with altitude. For example, at 1.5km in Denver, Col-
orado (USA) the flux is approximately 5x higher than at sea level,
while in an airplane flying at 10,000 km it is about 100x higher.

The circuit error rate for RAM cells, latches, and dynamic cir-
cuits is the product of the raw circuit error rate and a timing vulner-
ability factor (TVF). The raw circuit error rate indicates the
likelihood of a specific cell experiencing a bit flip. The minimum
charge required to flip a cell is called Qcrit. Qcrit depends on the
cell’s capacitance and voltage. The amount of charge a circuit can
collect, depends on its area and its collection efficiency, which is a
measure of the amount of charge generated from a particle strike.
For dynamic circuits, we must factor in the error masking effects
from a strike on any of the pull-down nodes.

The raw error rate of a cell can be computed by simulating
current pulses of all magnitude on all nodes of a cell at different
points of time. Unfortunately, this can be very compute intensive.
Hence, for full-chip simulations, usually we use approximate mod-
els or Monte Carlo simulation techniques.

We derate the circuit’s raw error rate by its TVF. The TVF is
the fraction of each cycle during which a bit flip in a cell will be
captured. RAM cells are typically always vulnerable; thus their
TVF is 100%. In contrast, latches typically hold data for 50% of
the time, when they are vulnerable, and are driven 50% of the time,
when they are not vulnerable. Consequently, the TVF of a latch is
roughly 50%. Recently, Seifert and Tam [13] have shown that the
TVF of a latch in a high-frequency design is likely to be much less
than 50% because a strike late in the hold phase may not have
enough time to propagate to the next latch in a pipeline.

Unlike RAMSs, latches, and dynamic nodes, static logic
requires special consideration. A strike on a static logic device,
such as a NAND gate, causes an error only if a forward state ele-
ment, such as a latch, captures the effect of the bit flip. A strike on
a static logic device may not propagate to the forward latch
because of three masking effects [14]: electrical masking (glitch
attenuates before arriving at the latch), latch-window masking
(glitch does not arrive within the setup and hold time of the for-
ward latch), and logical masking (glitch is on a “don’t care” term
of the logic feeding the latch). Hence, the error rate of a static logic
gate can be expressed as the product of the raw error rate and a
propagation vulnerability factor (PVF). The PVF is the fraction of
static logic faults that cause a bit flip in the forward latch.

The FIT/bit of a cell typically ranges between 0.001 - 0.010
[11][17]. At present the contribution of static logic to the overall
error rate is assumed to be small, but Shivakumar, et al. [14] pre-
dict that contribution of static logic will soon equal that of latches.



Assuming a FIT/bit of 0.001, TVF of 50%, a target system
size of four CPUs, an SDC FIT budget of 114 FIT (Section 2.2),
and the entire SDC budget is allocated to unprotected latches, then
a processor can have up to 57,000 (= 114 FIT / (0.001 FIT/bit x 0.5
TVF x 4 CPUs) unprotected latches in the design. Unfortunately,
today’s billion-transistor processors can have 10-1000x more
latches as well as other unprotected bits in the machine. Clearly,
meeting the SDC (and DUE) FIT budget is a challenging issue. In
the following subsections, we describe the SDC and DUE AVFs
and how they are used to calculate a processor’s SDC and DUE
FIT rates. In Section 4, we examine current techniques to reduce a
processor’s FIT rates.

3.2. SDC AVF

A device’s SDC AVF expresses the probability that a bit flip in
that device results in an error in a program’s output. Given our sin-
gle-bit fault model, a device protected by a single-bit error detec-
tion or correction mechanism cannot cause an SDC event, so its
SDC AVF—and its contribution to the overall SDC rate—is zero.
Bit flips in multiple bits could cause SDC events; we discuss this
issue separately in Section 5.

The SDC AVF of unprotected devices varies according to their
function and utilization. For example, an upset in a branch predic-
tor bit will not result in a user-visible error; therefore, its SDC AVF
is zero. Conversely, an upset in the program counter will most
likely result in executing the wrong instructions; therefore, the
SDC AVF of the program counter is practically 100%. Computing
SDC AVFs for other structures, such as the instruction queue, is
more involved. For example, an instruction queue entry containing
information pertaining to a wrong-path instruction will have a zero
AVF. At some other point in time, the same physical entry may
contain a vital correct-path instruction, resulting in a high AVF.

Mukherjee, et al. [10] introduced the concept of architecturally
correct execution (ACE) to compute the SDC AVF of such struc-
tures. Architecturally correct execution encompasses any execu-
tion that generates results consistent with the correct operation of
the system as observed by a user. Individual instructions may gen-
erate incorrect results without violating ACE if those results are
never observed outside the system (e.g., they are dead values).
Recent work has shown that even executing the wrong instructions
need not violate ACE [18].

A bit is called an ACE bit when it contains information that, if
changed, will affect the final outcome of the program. It is called
an un-ACE (un-necessary for ACE) bit otherwise. The SDC AVF
of a storage cell is the fraction of cycles it contains an ACE bit. If a
program executes for 10 million cycles and a storage cell contains
an ACE bit for 1 million of those cycles (and, hence, an un-ACE
bit for the other 9 million cycles), then the SDC AVF of that cell is
10%. The SDC AVF of a structure is the average of the SDC AVFs
of all cells in that structure. Mukherjee, et. al. [10] reported an
SDC AVF of 29% for the unprotected instruction queue of an Ita-
nium®2-like processor.

Although we describe the concept of SDC AVF at the bit level,
it applies to static logic as well. The SDC AVF of static logic is the
same as the SDC AVF of the forward latch it feeds. The AVF com-
putation for static logic is a little more involved if the logic chain
feeds multiple forward latches.

3.3. DUE AVF

The DUE AVF is the probability that a strike will result in a
detected unrecoverable error. Only components that have error
detection but not error correction (e.g., parity) will have non-zero

DUE AVFs. The DUE AVF is the sum of the true DUE and false
DUE AVFs (see Section 2.1).

Protecting a structure with an error detection mechanism (but
no recovery scheme) actually increases the overall error contribu-
tion from the structure. A fault that would have been an SDC event
now becomes a true DUE event, so the true DUE rate equals the
old SDC rate. However, some faults that would have been benign
because the program outcome was unaffected will now be
detected, generating false DUE events. Furthermore, error detec-
tion schemes generally add extra bits which raise the false DUE
rate of the structure as well. Thus, the total DUE AVF of the pro-
tected structure will be at least as large as, and probably greater
than, the SDC AVF of the unprotected version. A fault in an error
detection bit, such as a parity bit, would cause a false DUE event.

3.4. Computing SDC and DUE AVFs

There are three known ways to compute AVFs of different pro-
cessor structures: statistical fault injection, analytical models, and
performance models (simulators).

3.4.1. Statistical Fault Injection

Statistical fault injection (SFI) is a time-tested technique for
measuring vulnerability factors. SFI introduces bit flips—random-
ized in both time and space—into a model of the structure being
studied, such as an RTL (register transfer language) or perfor-
mance model. We then run forward and compare the architectural
state of the model with the state of an error-free model. After some
number of simulation cycles, if the comparison does not result in a
mismatch, the error is either latent in the processor or has been
masked. The latter can be determined via a thorough comparison
of microarchitectural state of the two models [19]. The AVF of the
structure being studied is estimated as the fraction of mismatches
observed divided by the total number of bit flips introduced.

SFI is a very powerful technique and has the advantage that it
does not require a priori understanding of the processor architec-
ture being studied. Unfortunately, SFI makes sense only in a very
detailed model, such as RTL, which models all processor state bits.
RTL models are usually much slower than performance models
and can realistically be run for only tens of thousands of simulated
cycles per injected error. Hence, computing the AVF of every pro-
cessor structure would require an enormous amount of compute
power to cover a sufficiently large number of injected errors.
Finally, a mismatch between the models with and without errors
may not necessarily mean that there is an error because architec-
tural state may actually contain un-ACE bits, such as dynamically
dead register values.

3.4.2. Analytical Model using Little’s Law

In selected cases when bits flow unmodified and without
duplication through a structure, we can use Little’s Law to com-
pute its AVF. Little’s Law can be stated as N = B x L, where N =
average number of bits in the structure, B = average bandwidth per
cycle into the structure, and L = average latency of an individual
bit through the structure. Applying this to ACE bits, we get the
average number of ACE bits in a structure as the product of the
average bandwidth of ACE bits into the structure (B,.) and the
average residence cycles of an ACE bit in the structure (L,..).
Thus, we can express the AVF of a structure as:

Baee X Lyce

ace

number of bits in structure
For example, for the instruction queue, B,. is the IPC
(instructions per cycle) times the number of ACE bits per instruc-
tion. L, is the residence cycles of ACE bits in the instruction



queue. This technique is useful in the early stages of a design when
neither a performance model nor RTL may be available. We can
also obtain estimates of B, and L, from a performance model.

3.4.3. ACE Analysis in a Performance Model

Both the SDC and DUE AVFs of various processor structures
can be computed using a performance model. The basic idea is to
identify which objects flowing through the machine are ACE and
which are un-ACE. The fraction of time a bit contains ACE state
is, by definition, the AVF of the bit. We refer to this process as /ife-
time analysis.

The key challenge of lifetime analysis with a performance
model is to identify the un-ACE fraction of a bit’s lifetime. (To
provide a conservative upper bound on the AVF, we assume a bit is
ACE unless it can be shown to be un-ACE.) Examples of instruc-
tions that give rise to un-ACE state are dynamically dead, wrong-
path, and falsely predicated instructions. Lifetime analysis requires
an in-depth understanding of the architecture and microarchitec-
ture. Otherwise, we may end up with an AVF number that is artifi-
cially too high.

Unlike SFI, however, ACE analysis in a performance model is
much faster because AVFs of a large number of processor struc-
tures can be computed in one experiment. Also, a performance
model can be realistically be run for tens of millions of cycles.
Thus it can potentially provide greater accuracy than SFI.

4. Techniques to Reduce the Soft Error Rate

A variety of techniques exist to keep the SDC and DUE rate of
a chip within the its FIT budget. Overall, the solution space can be
divided into process, circuit, and architectural solutions.

4.1. Process Technology Solutions

A key process technology that can help reduce SER is silicon-
on-insulator (SOI). Unlike bulk CMOS, SOI devices collect less
charge from an alpha or neutron particle strike because the silicon
layer is much thinner. IBM reports a 5x reduction in SER of
SRAM devices from partially-depleted SOI technology [5]. How-
ever, it is unclear whether we get similar reductions in SER from
SOI latches and logic devices. Fully-depleted SOI, in which the
silicon layer almost disappears, has the potential to offer further
reduction in SER. Nevertheless, volume manufacturing of fully-
depleted SOI chips is still a challenge.

4.2, Circuit Solutions

Since SOI does not solve the entire SER problem and may not
be available in all companies, circuit technologies and architectural
solutions can provide alternate mechanisms to reduce the SER.
Such circuit techniques typically involve tuning the device param-
eters and creating radiation-hardened (or rad-hard) cells. Examples
of such tuning could involve increasing the capacitance and/or
supply voltage of a device. Both of these raise the Qcrit, thereby
lowering the SER. Rad-hard cells may also contain redundant state
that can recover from a particle strike [4]. Unfortunately, rad-hard
cells come with significant area and power penalty, so these cells
must be used judiciously.

4.3. Architectural Solutions

Architectural solutions may be more effective than circuit-
level solutions for two reasons. First, the definition of what consti-
tutes an error typically lies in the architecture (e.g., a strike on a
branch predictor does not result in an error in a microprocessor).
Second, typical solutions, such as parity or ECC, often can be
amortized over a large number of bits. For example, SECDED
(single error correct double error detect) ECC has the overhead of
8 bits per 64 bits of data (i.e., 13%), whereas rad-hard cells can
have an area penalty of 30-100% depending on the aggressiveness

of the SER reduction technique used. However, in places where
ECC incurs a performance penalty (e.g., extra cycle(s) to verify the
ECC code), rad-hard cells may be a better solution.

Architectural solutions to reduce SDC and DUE can be classi-
fied broadly into two categories: micro and macro solutions.

4.3.1. Micro Solutions

Examples of micro solutions are parity, SECDED ECC, and
the 7C bit [20]. Parity is typically an XOR of all the data bits and
can detect any single-bit error. A bit protected with parity typically
has an SDC AVF of zero, but non-zero DUE AVF. Even the DUE
AVF for parity-protected structures may be reduced to zero with
architectural knowledge. For example, a parity-protected write-
through cache can invalidate a block on a parity error and refetch
the correct block from a lower level cache.

SECDED ECC—often used in processor caches—can correct
all single-bit errors and detect all double-bit errors, providing both
SDC and DUE AVFs of zero for single-bit faults. ECC can be
implemented either inline or out-of-band. Inline ECC requires
computing and verifying that the ECC code is correct before
returning the data from the read. This can often incur one or more
extra cycles in a processor pipeline. Alternatively, out-of-band
ECC checks allow a processor to proceed with the data read out. If
the ECC check detects an error, the instruction that read the incor-
rect data is squashed at the commit stage of the pipeline, the cache
data corrected, and the instruction replayed.

Finally, the TU bit is an error propagation mechanism that
reduces false DUE. Instead of signaling an error as soon as an error
is detected (e.g., via parity), the error is posted in the 7T bit and
propagated until more information is available. For example,
instead of raising an error from a parity-protected register file, it
can be posted by setting the 7T bit in the instruction that reads the
specific register. Later, if the offending instruction is determined to
be on the wrong path, then the T bit is ignored, avoiding a false
DUE event.

4.3.2. Macro Solutions

Micro-architecting every bit with parity, ECC, or T bits may
require significant amount of area and design effort. Not only do
we have to have the code bits, but also the logic to compute and
verify the codes as well as datapaths to signal that an error has
occurred. Hence, in some cases, it may be simpler to use complete
mirroring of CPUs or threads for fault detection.

Two broad solutions for fault detection include cycle-by-cycle
lockstepping of identical processor pipelines [15] and redundant
multithreading (RMT) [9][1]. In cycle-by-cycle lockstepping, the
same program is run on identical pipelines whose outputs are
checked for mismatches every cycle. In RMT, outputs of selected
committed instructions are checked for mismatch at the commit
point of the instructions [12]. Unlike lockstepping, RMT does not
require the two threads to be cycle-synchronized.

CPU or thread mirroring for fault detection reduces the SDC
rate, but increases the DUE rate. Reducing the DUE rate of a pro-
cessor requires recovery, either in hardware or software. Since the
time domain of errors is in days and months and the cost of recov-
ery is typically in milliseconds or less, it is often not critical to
recover rapidly. However, recovering from a detected error
requires identifying the offending processor and maintaining the
correct state from which the recovery can be initiated. The offend-
ing processor can be identified from internal error signals when the
external checker detects an error (e.g., when parity signals fire
internally in a Stratus dual modular redundant system) or using
voting via triple modular redundancy (also offered by Stratus).
Alternatively, we can periodically checkpoint the state of the pro-



cessor and on an error roll back and restart both pipelines or
threads from the checkpoint [16].

5. Double-bit Errors

Up to now we have focused on single-bit errors. This section
discusses double-bit errors. Errors from alpha or neutron particle
strikes in the earth’s atmosphere and involving more than two bits
have extremely low probability, and are not yet a concern.

There are two types of double-bit errors: spatial and temporal.
Spatial double-bit errors arise from a single strike hitting multiple
contiguous bits. In today’s technology, this is only a concern for
RAM cells. Latches are usually 5-10x bigger than RAM cells and
not vulnerable to spatial double-bit errors. If the RAM cells are
protected with parity or ECC, then the typical solution to protect
against spatial double-bit errors is to interleave the protected bits.
This converts a double-bit error into two single-bit errors detect-
able and/or correctable in hardware.

Temporal double-bit errors arise from two different particles
upsetting different bits of the same set of bits protected with parity
or ECC. Temporal double-bit errors are important only for very
large structures, such as multi-megabyte caches. The usual solu-
tion is to use SECDED ECC and scrub the data—read and correct
single-bit errors—periodically. If the scrubbing interval is less than
the mean time to a double-bit error, then most of the temporal dou-
ble-bit errors can be eliminated [8].

6. Future Directions

There are six directions in which we expect architecture
research in soft errors to evolve. First, we must enable the compu-
tation of detailed SDC and DUE AVF numbers for different struc-
tures in a processor and chipsets. This is critical to properly
understand the SDC and DUE rate of a computer system. This
evaluation will require detailed lifetime analysis and potentially
new techniques to identify ACE and un-ACE components in the
lifetime of a bit in a processor’s structure.

Second, we expect AVF reduction techniques to evolve based
on the AVF characterization of different processor structures. To
trade-off performance with errors, Weaver, et al. [20] proposed the
use of the metric Mean Instructions to Failure (MITF), which is
proportional to the IPC / AVF under certain constraints.

Third, modern processor chips contain both processor cores as
well as system components, such as memory controllers and rout-
ers. Protecting the data flowing through the “un-core” portion may
not be hard because data is typically produced in the pipeline, but
flows unmodified through the entire system. We could provide
end-to-end error protection by generating the error protection bits
at the point where the pipeline creates the data and let the entire
bundle flow unchanged until the data is consumed. However, pro-
tecting the micro-architectural state that the data passes through
may require further investigation.

Fourth, we expect researchers to investigate software versions
of RMT. Interestingly, lockstepping is fundamentally a hardware
concept, whereas RMT can be implemented in either hardware or
software because the checks are done at the architectural instruc-
tion level. More importantly, the RMT model—via the use of its
expanded sphere of replication—allows designers to reduce the
number of software checks necessary compared to prior imple-
mentations of software fault detection. Also, software does not
have full visibility into the hardware, so the hardware may have to
selectively protect structures that are not covered by software
RMT.

Fifth, we need to understand and characterize how soft errors
trade off with power. We already know that the soft error rate rises
steeply when the supply voltage is reduced. At the architectural
level, this may translate into trading off activity factor (AF)—how
often a bit is activated, which is a measure of dynamic power—
with AVF. For example, a structure with a low AVF and high AF
may require special attention because the structure is probably
being used inefficiently in the microarchitecture.

Finally, as CMOS continues to mature, we expect researchers
to investigate soft errors from other technology issues, such as
power supply noise, coupling, etc. Although this requires a
detailed understanding of a different fault model, we expect many
of the definitions in this paper to be carried over to these other
kinds of soft errors.
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